
Molecular Modeling Computational Chemistry

Covalent Bonds: Lewis Structures, Molecular Shapes

Dr. Ron Rusay

Shapes of Molecules

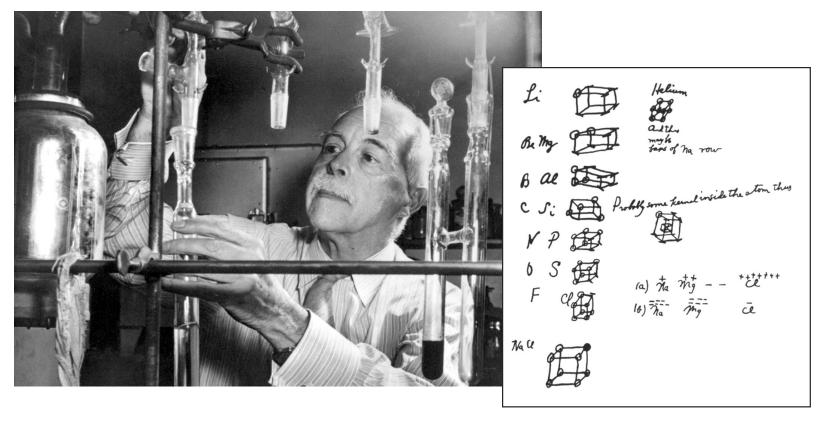
View: What is the shape of a molecule?
George Zaidan and Charles Morton

http://chemconnections.org/general/ chem108/Molecular%252520Shapes-Guide.html

Guiding Questions

Molecular Modeling (Individual or Collaborative)

Report Form (Replacement pages for Molecular Model Lab pp. 97-103)

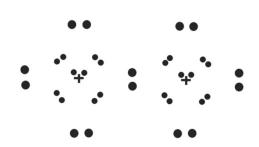

	← → G	nolview.org/?cid=222				☆
http://chei	nconi	Names: nections.org/ge	neral/chem108	Chemistry%2	20108%20Molecul deling Report politication of the control of the c	ar%20Modeling
•		Ø ⊃Bonding, L	%20Form%20	Fall%202017.	deling Report D df	
		Contact your assigned gr	oup memoers. Dr. It nas se	eni you an e-maii inai i	nomaes men e-man adaresses.	
		with your group and dev	velop a plan to distribute	the workload, consolide	w. Discuss the overall workload ate the results, and have each	
	-	member review and under	X. Intornation	re stabmitting the comple	in PS 110	
		The first column lists for	ormulas for a number of o	compounds. The bond	PS 110, ing type is to be determined in is for the electronegativity between the atoms being	
	0	for these compounds us difference, the absolute	ing electronegativity (a)	POOP column	n is for the electronegativity between the atoms being	
	\triangle	considered, EN2 - EN	. The third column is fo	or the average electron	negativity of the two atoms,	
	\Diamond	$(EN_1 + EN_2)/2$.		F		
		Compound	http://mol	view.org	Bonding	
	0	L		Br 2	Type	
	0	HF				
	~	HC1				
	e ⁺	HBr				
	e					

Turn-in individually or one per group Consult Calendar for Due Date

Important Bond Numbers

Symbol	Valence	Number of	Types	Shape		
	electrons	Bonds	2,700	electronic	molecular	
		4	4 single			
С	4	4	2 single + 1 double			
		4	1 single + 1 triple			
Н	1	1	1 single			
0		2	1 double			
0	6	2	2 single			
		3	3 single			
N	5	3	1 single + 1 double			
		3	1 triple			

Professor Gilbert Newton Lewis (circa 1940)



G.N. Lewis

Photo Bancroft Library, University of California/LBNL Image Library

Footnote:

G.N. Lewis, despite his insight and contributions to chemistry, was never awarded the Nobel prize.

Notes from Lewis's notebook and his "Lewis" structure.

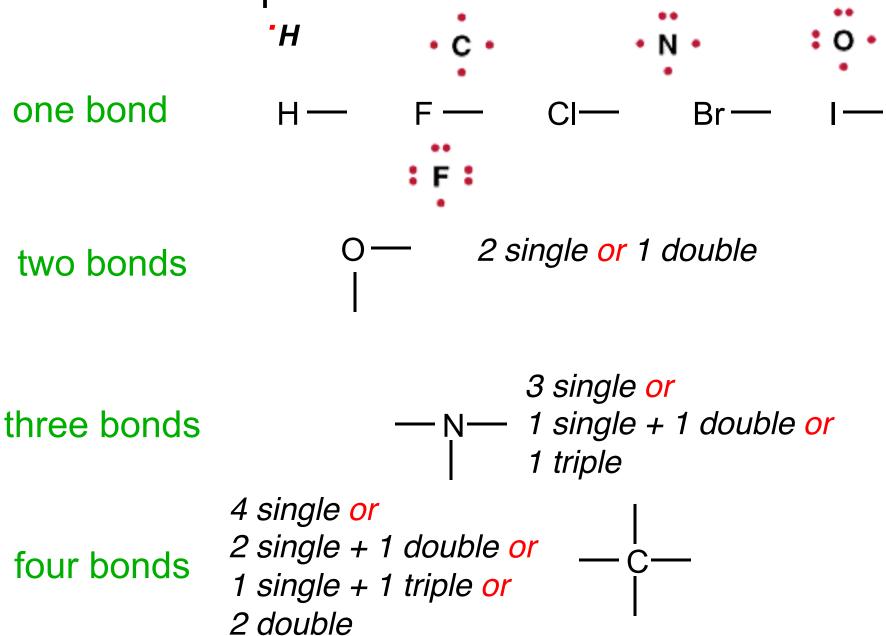
Lewis Electron-Dot Drawings

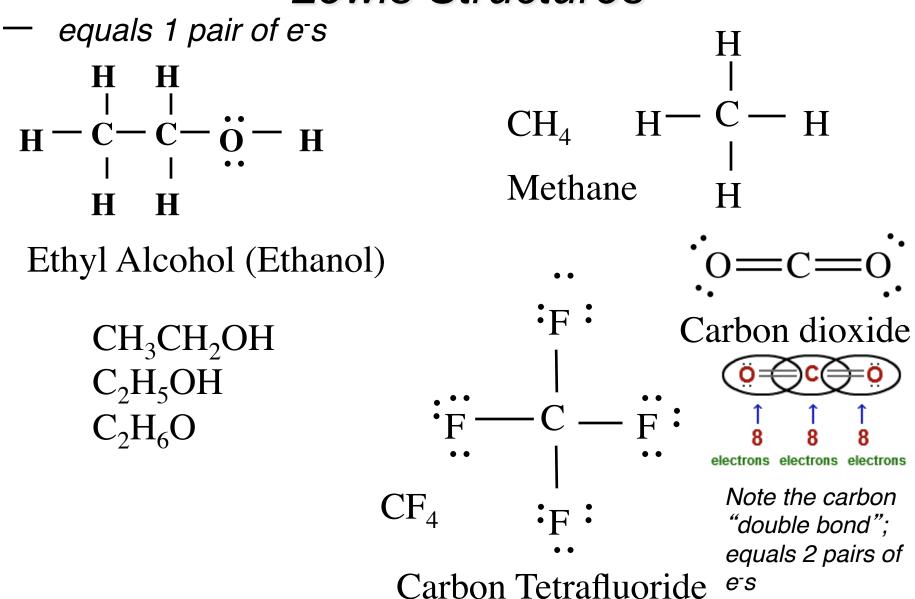
• н

Covalent Bonding-Valence Electrons
Periods 2 & 3

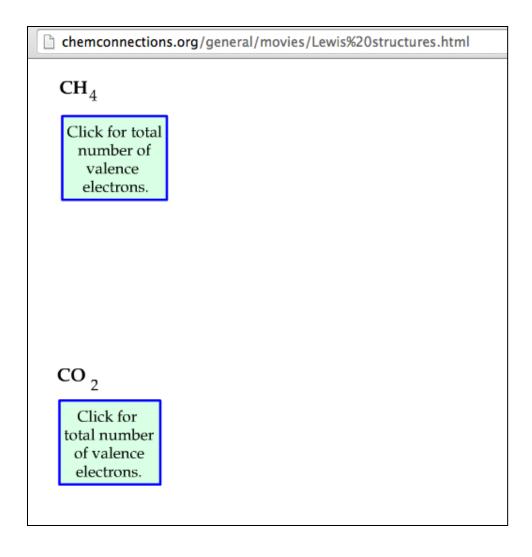
	1A(1)	2A(2)
	ns ¹	ns ²
2	• Li	•Be•
3	• Na	•Mg•

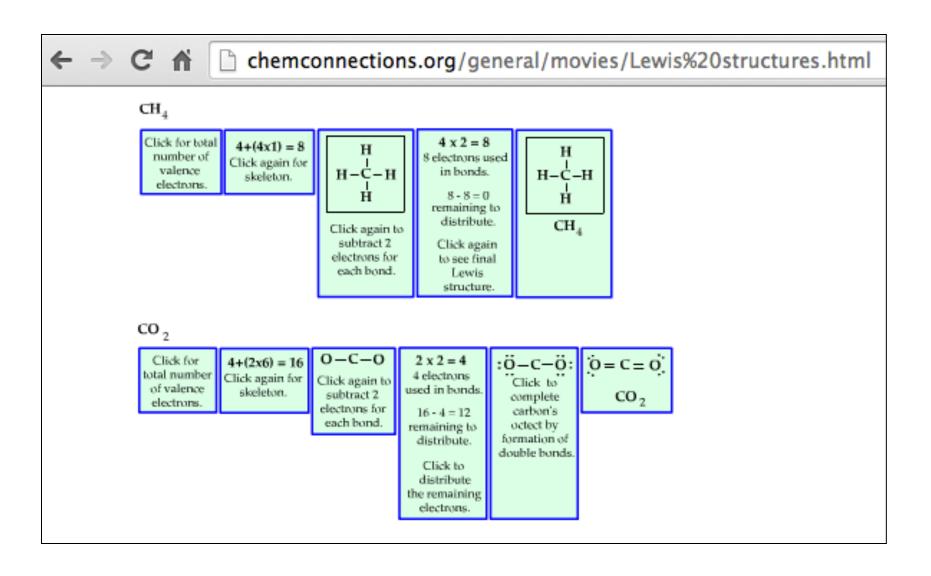
3A(13)	4A(14)	5A(15)	6A(16)	7A(17)	8A(18)
ns ² np ¹	ns ² np ²	ns ² np ³	ns ² np ⁴	ns ² np ⁵	ns ² np ⁶
• B •	· c ·	• N •	:0.	: F:	Ne:
• AI •	• Si •	. P	: s ·	: CI :	 : Ar :


'H


N

o


Important Bond Numbers


Lewis Structures

http://chemconnections.org/general/movies/Lewis%20structures.html

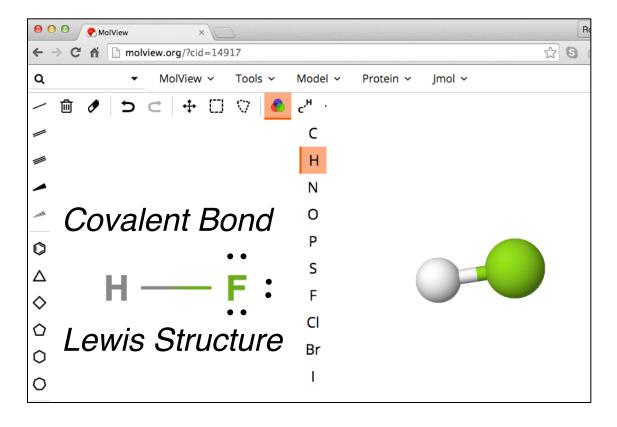
http://chemconnections.org/general/movies/Lewis%20structures.html

Covalent Compounds

- Share valence electrons.
- •1 pair = 1 bond; maximum # of atom-atom bonds = 3.
- Octet rule ("duet" for hydrogen)
- •Lewis structure examples:

Lewis structures

Notice the charges:


In one case they balance, can you name the compound? In the other they do not.

It has a "Formal" charge. Can you name the polyatomic ion?

Computational Chemistry

Covalent Bonding

Polarity: Molview (http://molview.org)

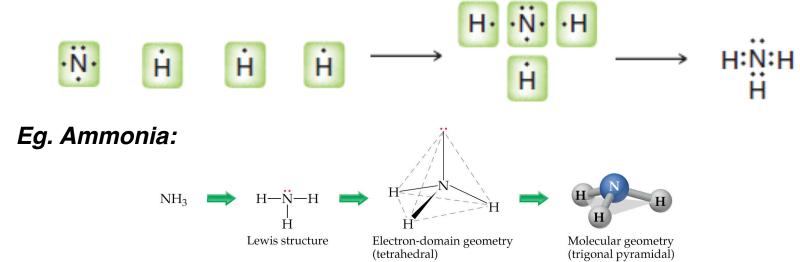
Close opening screen; caffeine appears.

Click trash; now build hydrogen fluoride

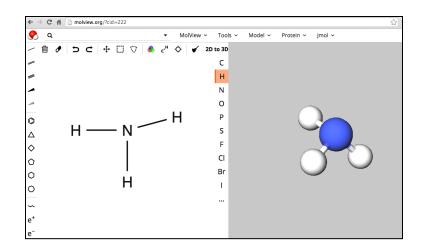
http://molview.org

Molecular Shapes → *Lewis Structures*

Report Form - Molecular Models

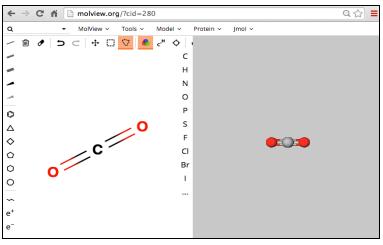

	emical emula	# Walence e's in Molecule	Lewis Structure	Name of VSEPR Arrangement (Geometry)	Name of Shape (Molecular Geometry)	Bond (Polar or Non-Polar)	Molecule (Polar or Non-Polar)	3 Dimensional Drawing	Resonance (Yes or No)
н	1,0		о н				Polar		No
N	ин _а		H N H				Polar		No
c	ен,		H H						No
С	şμ,		H C H	Around each C	Around each C	5 5	Non- Polar		No
н	ICN		H C N	Around C	Around C	H-C C-N	Polar		No
C	; _, н,		нссн	Around each C	Around each C	ਹ ਦ ਹ			No
8	30,		0 8 0				Non- Polar		Yes

Molecular Modeling: Bonding & Lewis Structures Computational Chemistry: Molecular Modeling Report Form


Ammonia

Lewis Structures — Molecular Shapes

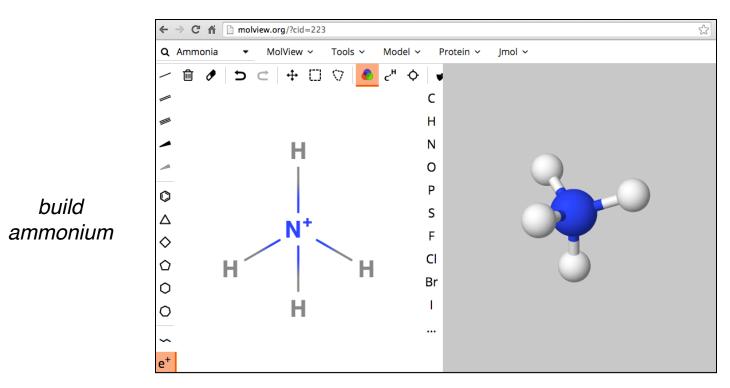
- For simple Lewis structures:
 - 1. Draw the individual atoms using dots to represent the valence electrons.
 - 2. Put the atoms together so they share PAIRS of electrons to make complete octets.
- NH₃, for example:



Molecular Shapes — Lewis Structures MolView: Visual On-line Molecular Modeling

build ammonia

build carbon dioxide


Bonding, Lewis Structures, Molecular Modeling: Computational Experiments

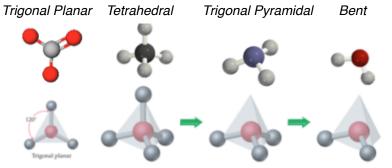
Molecular Shapes → *Lewis Structures*

	Chemical Formula	# Valence e's in Molecule	Lewis	Structure	Name of VSEPR Arrangement (Geometry)	Name of Shape (Molecular Geomerty)	Bond (Polar or Non–Polar)	Molecule (Polar or Non-Polar)	3 Dimensional Drawing	Resonance (Yes or No)
	N ₂		N	N						No
Ammoniu	M (NH₄)⁺		Н	N H				Polyatomic Ion		No
	PBr ₃		Br Br	P Br				Polar		No
	(NO ₂) ⁻		0	N O				Polyatomic Ion		Yes
	(CO ₃)2-		0	со				Polyatomic Ion		Yes
	CH ₂ O		н	О С Н						No

Molecular Modeling: Bonding & Lewis Structures Computational Chemistry: Molecular Modeling Report Form

Molecular Shapes → Lewis Structures MolView: Visual On-line Molecular Modeling

Molecular Modeling: Bonding & Lewis Structures Computational Chemistry: Molecular Modeling Report Form


Lewis Structures → *Molecular Shapes*

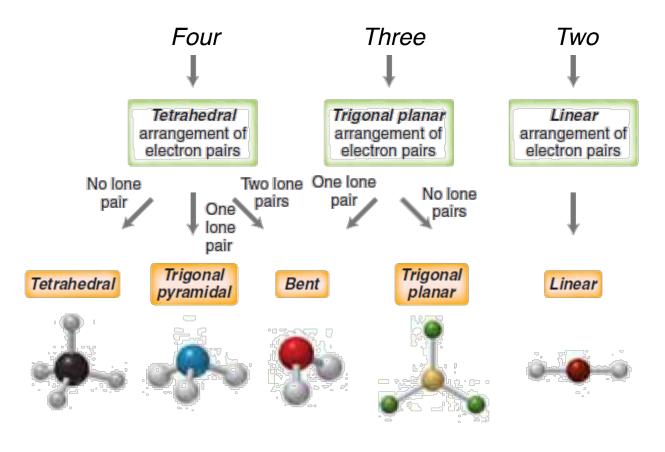
For simple Lewis structures:

- 1. Draw the individual atoms using dots to represent the valence electrons.
- 2. Put the atoms together so they share PAIRS of electrons to make complete octets.

$$NH_4^+$$
 $_+^+$
 H
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$
 $_+^+$

Ammonium

Trigonal Planar Tetrahedral Tetrahedral Tetrahedral


molecular

electronic (VSEPR: Electron Domain)

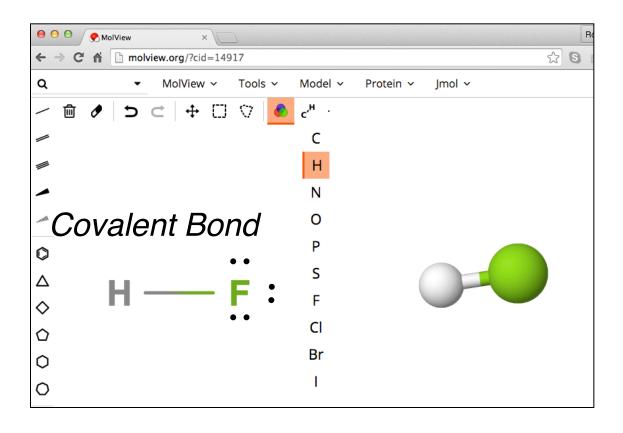
Symbol	Symbol Valence Num		Types	Shape		
5/2	electrons	Bonds	2,7500	electronic	molecular	
		4	4 single			
С	4	4	2 single + 1 double			
		4	1 single + 1 triple			
Н	1	1	1 single			
		2	1 double			
0	6	2	2 single			
		3	3 single			
N	5	3	1 single + 1 double			
		3	1 triple			

Molecular Geometry – Overview

Numbers of atoms or ("lone" / "free") pairs of electrons about the central atom from Lewis Structure

Molecular Geometry Assignment

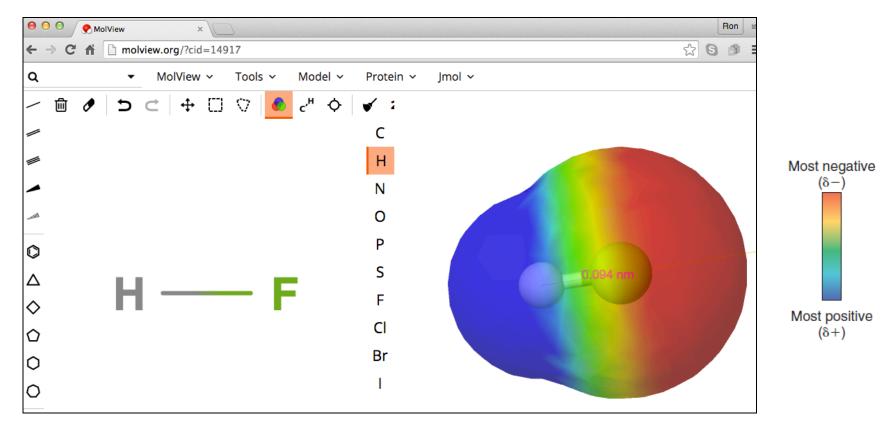
	Orbital (Electronic) Geometry	<u>Molecular</u> <u>Geometry</u>	Bond Angle	<u>e</u>			# of lone pairs
Important	Linear	Linear	180°	000			0
in Organic	Trigonal Planar	Trigonal Planar	120°		•••		0
Compound	^{Is} Trigonal Planar	Bent	<120°			•••	1
	Tetrahedral	Tetrahedral	109.5°	•8•			0
	Tetrahedral	Trigonal Pyramidal	<109.5°		680		1
	Tetrahedral	Bent	<109.5°	0		•••	2
See again	Trigonal Bipyramidal	Trigonal Bipyramida	al 120°, 90°	- 3	0		0
in Chem 120	Trigonal Bipyramidal	Seesaw <	<120°, <90°		3		1
and possibly in	Trigonal Bipyramidal	T-shape	<90°			• •	2
Chem 109	Trigonal Bipyramidal	Linear	180°	0			3
	Octahedral Octahedra	al	90°	868			0
	Octahedral Square P	yramidal	<90°		808		1
	Octahedral Square P	lanar	90°				2


Molecular Modeling Computational Chemistry

Shapes — Molecular Polarity

Dr. Ron Rusay

Computational Chemistry Polarity


From Jmol dropdown menu click

MEP surface lucent

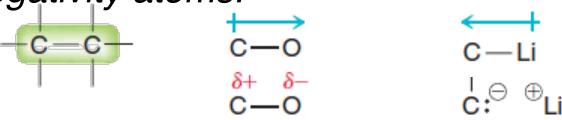
http://molview.org

Covalent Bonded Compounds

Polarity: Molview (http://molview.org) Jmol

Color coded electron density distribution scale: redhighest δ -, blue highest δ +, green balanced

NOTE: These colors may vary from model to model.

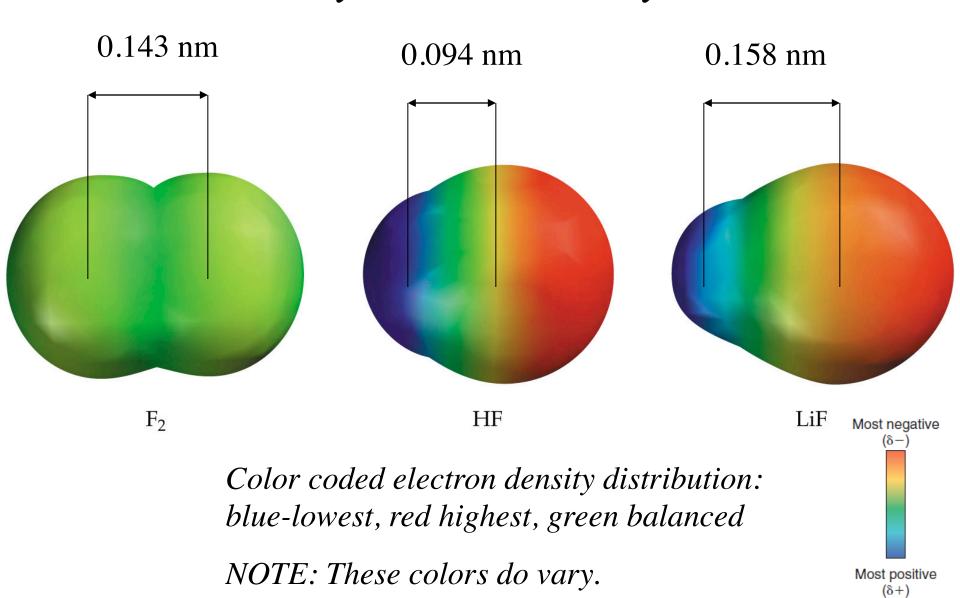

Bond Polarity

A molecule, such as HF, that has a center of positive charge and a center of negative charge is polar; It has a "dipole moment". The partial charge is represented by δ and the polarity with a vector arrow.

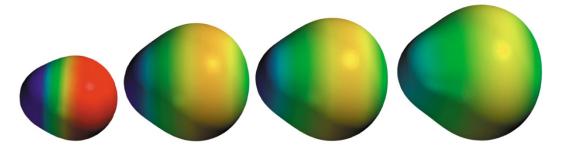
$$H-F$$

Polar Covalent Bonds

Orbital electron density tends to shift away from lower electronegativity atoms to higher electronegativity atoms.



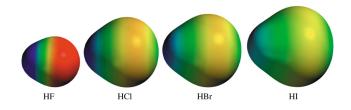
The greater the difference in electronegativity, the more polar the bond.


Covalent		P	Polar covalent			lonic			
с—с	с—н	N—Н	с—о	Li—C	Li—N	Na-Cl	Na-O		
Small difi in electron						rge differen lectronegati			

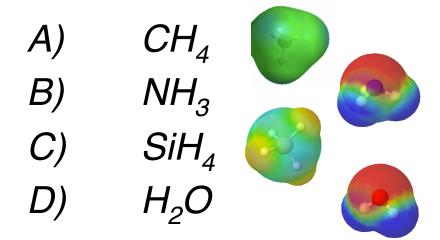
The shorter the bond, the more polar the bond.

Polarity /Visual Portrayal

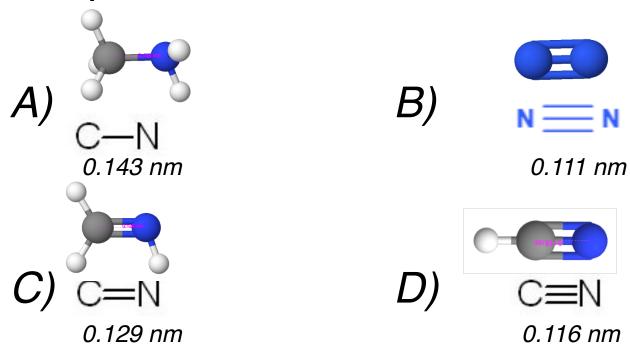
Hydrogen Halides



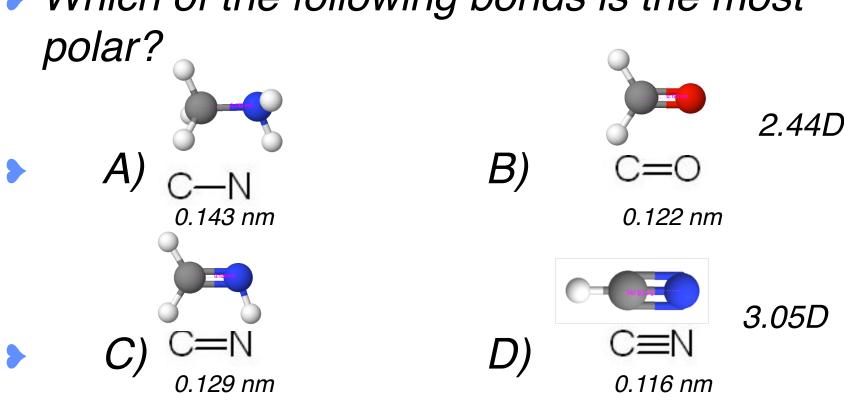
What happens to the electronegativities, bond lengths and bond energies going down the column of halogens?


Hydrogen-Halogen Bond Lengths and Bond Strengths								
Hydrogen halide	Bond length (Å)	Bon kcal/mol	kJ/mol					
H—Br	0.917 1.2746 1.4145 Br 1.6090	136 103 87 71	571 432 366 298					

Which of the following bonds is the most polar?


$$D)$$
 H—CH₃

In which of the compounds below is the δ^+ for Hydrogen (H) the greatest?



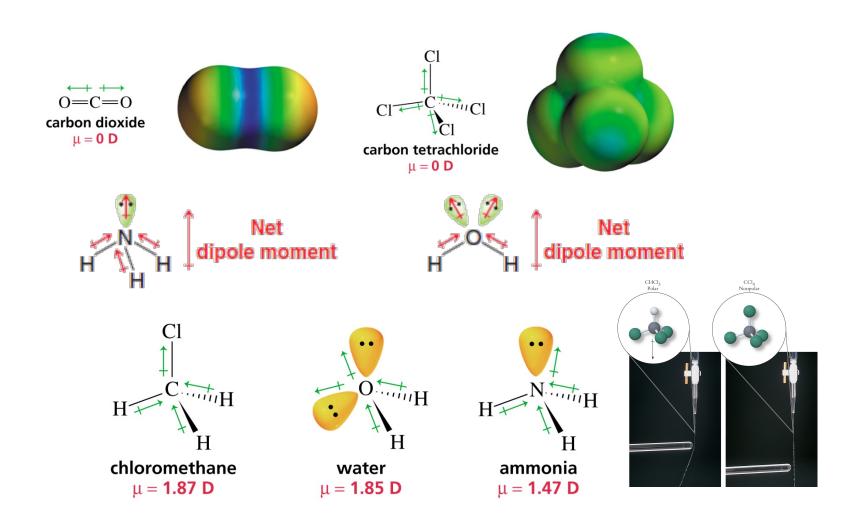
Which of the following nitrogen bonds is the most polar?

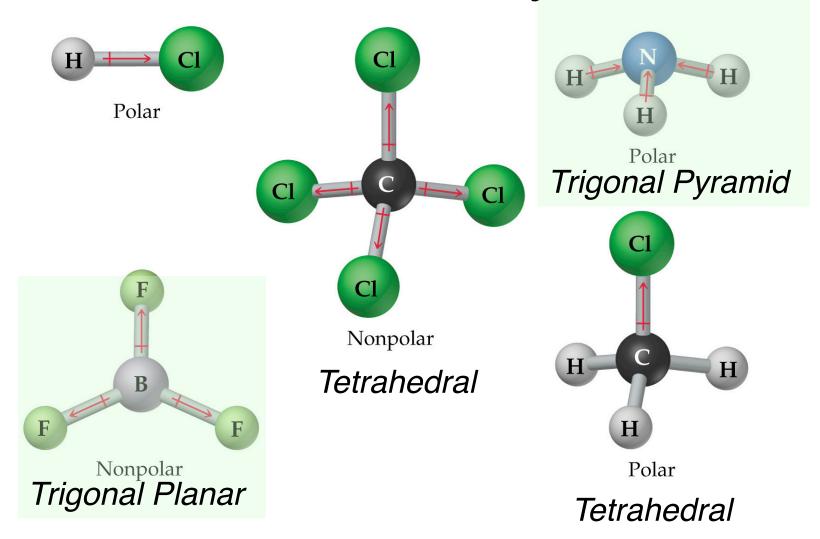
Bond length: single > double > triple

Which of the following bonds is the most

Bond length: single > double > triple

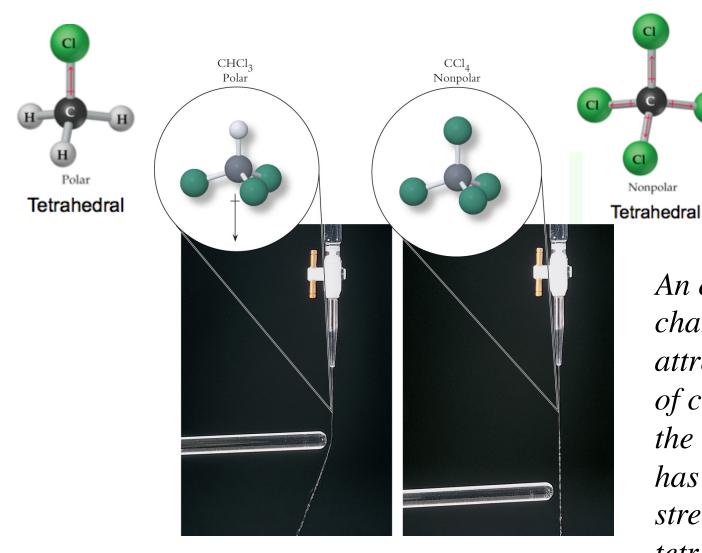
Polarity & Physical Properties Ozone and Water


- Resultant Molecular Dipoles > 0
- Solubility: Polar molecules that dissolve or are dissolved in like molecules


- The Lotus flower
- Water & dirt repellancy: solubility?

Molecular Polarity

The vector sum of the magnitude and the direction of the individual bond dipoles determine the overall polarity (dipole moment) of a molecule



Molecular Polarity

http://chemconnections.org/COT/VSEPR1/

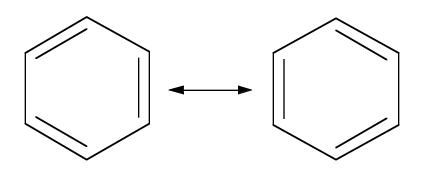
DVC Student Project Group

An electrically charged rod attracts a stream of chloroform on the left, but has no effect on a stream of carbon tetrachloride.

Molecular Modeling Computational Chemistry

Lewis Structures --- Resonance

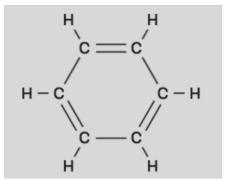
Dr. Ron Rusay


Resonance

Considered when more than one valid Lewis structure can be written for a molecule without changing the atoms' positions. It is used to explain variations in bond lengths and chemical behavior.

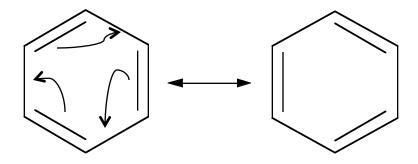
These are shorthand structures.

Each point of an angle in the hexagon equals a carbon atom, the hydrogen atoms are not shown & must be deduced from the fact that carbon forms 4 bonds.


Shorthand "Bond Line" Structures

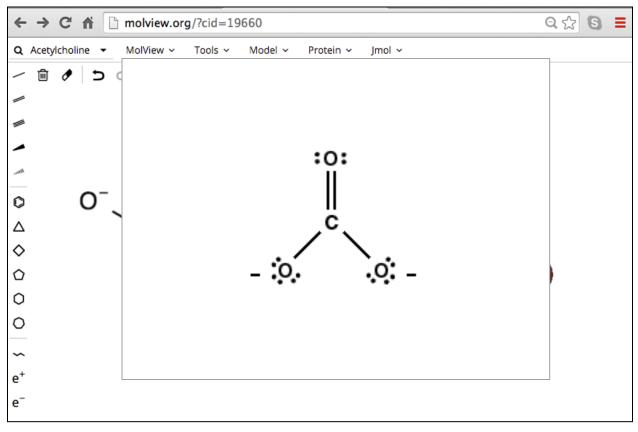
Each point of an angle in the hexagon equals a carbon atom, the hydrogen atoms are not shown & must be deduced from the fact that carbon forms 4

bonds.

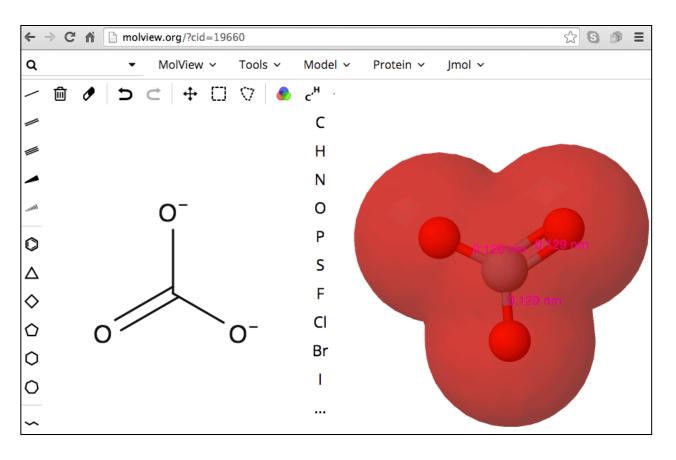

$$C_6H_6$$
 $H-C$
 C_6
 C

 C_6H_6

Resonance


Moving electrons:

The overall structure is considered to be a weighted average of all of the possible valid Lewis structures where some are more favored than others.

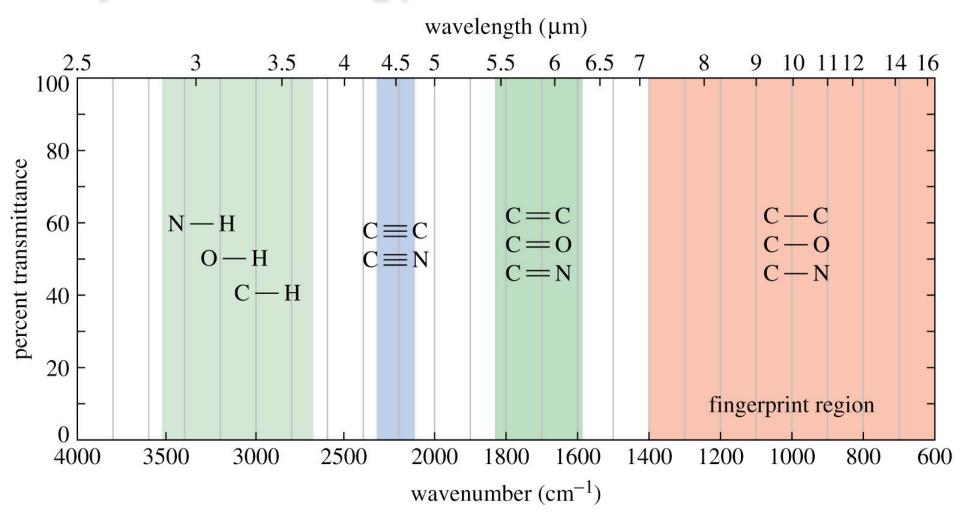

Resonance structures are mental images used to explain the observed arrangement of the atoms and their bond lengths and bond angles.

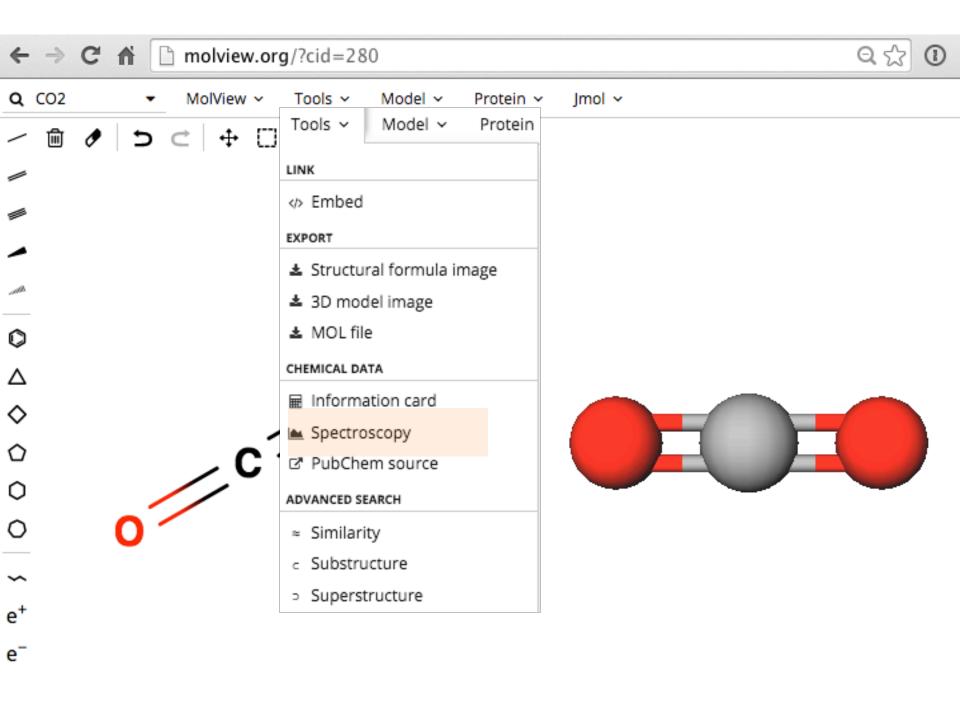
Molecular Shapes — Lewis Structures MolView: Polyatomic Ions

Bonding, Lewis Structures, Molecular Modeling:

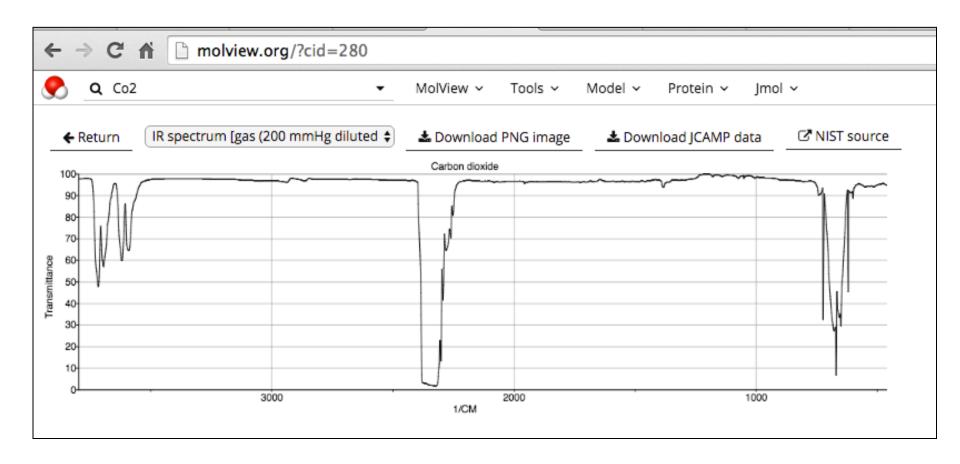
Carbonate Ion Resonance

The 3-d structure is an average of the resonance structures. The normal bond length of a C=O bond is ~0.120 nm and C-O is ~0.142 nm.


Molecular Modeling Computational Chemistry


Molecular Energy Absorbance

Dr. Ron Rusay



Infrared Energy - Bond Absorbances

Infrared- Bond Absorbances

http://molview.org

Infrared- Bond Absorbances

https://www.co2.earth/